DSpace Repository

Sequence-specific recognition of DNA minor groove by an NIR-fluorescence switch-on probe and its potential applications

Show simple item record

dc.contributor.author Narayanaswamy, Nagarjun
dc.contributor.author Das, Shubhajit
dc.contributor.author Samanta, Pralok K.
dc.contributor.author Banu, Khadija
dc.contributor.author Sharma, Guru Prasad
dc.contributor.author Mondal, Neelima
dc.contributor.author Dhar, Suman K.
dc.contributor.author Pati, Swapan Kumar
dc.contributor.author Govindaraju, T.
dc.date.accessioned 2017-01-04T09:41:37Z
dc.date.available 2017-01-04T09:41:37Z
dc.date.issued 2015
dc.identifier.citation Nucleic Acids Research en_US
dc.identifier.citation 43 en_US
dc.identifier.citation 18 en_US
dc.identifier.citation Narayanaswamy, N.; Das, S.; Samanta, P. K.; Banu, K.; Sharma, G. P.; Mondal, N.; Dhar, S. K.; Pati, S. K.; Govindaraju, T., Sequence-specific recognition of DNA minor groove by an NIR-fluorescence switch-on probe and its potential applications. Nucleic Acids Res. 2015, 43 (18), 8651-8663. en_US
dc.identifier.issn 0305-1048
dc.identifier.uri https://libjncir.jncasr.ac.in/xmlui/10572/2048
dc.description Restricted access en_US
dc.description.abstract In molecular biology, understanding the functional and structural aspects of DNA requires sequence-specific DNA binding probes. Especially, sequence-specific fluorescence probes offer the advantage of real-time monitoring of the conformational and structural reorganization of DNA in living cells. Herein, we designed a new class of D2A (one-donor-two-acceptor) near-infrared (NIR) fluorescence switch-on probe named quinone cyanine-dithiazole (QCy-DT) based on the distinctive internal charge transfer (ICT) process for minor groove recognition of AT-rich DNA. Interestingly, QCy-DT exhibited strong NIR-fluorescence enhancement in the presence of AT-rich DNA compared to GC-rich and single-stranded DNAs. We show sequence-specific minor groove recognition of QCy-DT for DNA containing 5'-AATT-3' sequence over other variable (A/T) 4 sequences and local nucleobase variation study around the 5'-X(AATT) Y-3' recognition sequence revealed that X = A and Y = T are the most preferable nucleobases. The live cell imaging studies confirmed mammalian cell permeability, low-toxicity and selective staining capacity of nuclear DNA without requiring RNase treatment. Further, Plasmodium falciparum with an AT-rich genome showed specific uptake with a reasonably low IC50 value (< 4 mu M). The ease of synthesis, large Stokes shift, sequence-specific DNA minor groove recognition with switch-on NIR-fluorescence, photostability and parasite staining with low IC50 make QCy-DT a potential and commercially viable DNA probe. en_US
dc.description.uri 1362-4962 en_US
dc.description.uri http://dx.doi.org/10.1093/nar/gkv875 en_US
dc.language.iso English en_US
dc.publisher Oxford Univ Press en_US
dc.rights ?Oxford Univ Press, 2015 en_US
dc.subject Biochemistry & Molecular Biology en_US
dc.subject Double-Stranded DNA en_US
dc.subject Molecular-Dynamics en_US
dc.subject Optical-Properties en_US
dc.subject Malaria Parasites en_US
dc.subject Crystal-Structure en_US
dc.subject Water-Molecules en_US
dc.subject Living Cells en_US
dc.subject Cyanine Dyes en_US
dc.subject Base-Pairs en_US
dc.subject Binding en_US
dc.title Sequence-specific recognition of DNA minor groove by an NIR-fluorescence switch-on probe and its potential applications en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account