Abstract:
Understanding the origin of intrinsically low thermal conductivity is fundamentally important to the development of high-performance thermoelectric materials, which can convert waste-heat into electricity. Herein, we report an ultralow lattice thermal conductivity (ca. 0.4 W m(-1) K-1) in mixed valent InTe (that is, In+In3+Te2), which exhibits an intrinsic bonding asymmetry with coexistent covalent and ionic substructures. The phonon dispersion of InTe exhibits, along with low-energy flat branches, weak instabilities associated with the rattling vibrations of In+ atoms along the columnar ionic substructure. These weakly unstable phonons originate from the 5s(2) lone pair of the In+ atom and are strongly anharmonic, which scatter the heat-carrying acoustic phonons through strong anharmonic phonon-phonon interactions, as evident in anomalously high mode Gruneisen parameters. A maximum thermoelectric figure of merit (zT) of about 0.9 is achieved at 600 K for the 0.3 mol% In-deficient sample, making InTe a promising material for mid-temperature thermoelectric applications.