Abstract:
Substitution of heteroatoms in graphene is known to tailor its band gap. Another approach to alter the band gap of graphene is to create zero-dimensional graphene quantum dots (GQDs). Here we present the synthesis and photoluminescence properties of B-doped graphene quantum dots (B-GQDs) for the first time, having prepared the B-GQDs by chemical scissoring of B-doped graphene generated by arcdischarge in gas phase. We compare the photoluminescence properties of B-GQDs with nitrogen-doped GQDs and pristine GQDs. Besides, excitation wavelength independent PL emission, excellent upconversion of PL emission is observed in GQDs as well as B-and N-doped GQDs. (C) 2014 Elsevier B.V. All rights reserved.