DSpace Repository

In-situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium-ion Batteries

Show simple item record

dc.contributor.author Shiva, Konda
dc.contributor.author Jayaramulu, Kolleboyina
dc.contributor.author Rajendra, H. B.
dc.contributor.author Maji, Tapas Kumar
dc.contributor.author Bhattacharyya, Aninda J.
dc.date.accessioned 2017-02-21T07:02:08Z
dc.date.available 2017-02-21T07:02:08Z
dc.date.issued 2014
dc.identifier.citation Shiva, K; Jayaramulu, K; Rajendra, HB; Maji, T; Bhattacharyya, AJ, In-situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium-ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie 2014, 640 (6) 1115-1118, http://dx.doi.org/10.1002/zaac.201300621 en_US
dc.identifier.citation Zeitschrift Fur Anorganische Und Allgemeine Chemie en_US
dc.identifier.citation 640 en_US
dc.identifier.citation 6 en_US
dc.identifier.issn 0044-2313
dc.identifier.uri https://libjncir.jncasr.ac.in/xmlui/10572/2430
dc.description Restricted Access en_US
dc.description.abstract It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: [K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport. en_US
dc.description.uri 1521-3749 en_US
dc.description.uri http://dx.doi.org/10.1002/zaac.201300621 en_US
dc.language.iso English en_US
dc.publisher Wiley-V C H Verlag Gmbh en_US
dc.rights @Wiley-V C H Verlag Gmbh, 2014 en_US
dc.subject Inorganic & Nuclear Chemistry en_US
dc.subject Sn@C en_US
dc.subject Metal-Organic Frameworks en_US
dc.subject Anode Materials en_US
dc.subject Specific Capacity en_US
dc.subject Rate Capability en_US
dc.subject Lithium-Ion Battery en_US
dc.subject Secondary Batteries en_US
dc.subject Hollow Carbon en_US
dc.subject Storage en_US
dc.subject Sn en_US
dc.subject Li en_US
dc.subject Composite en_US
dc.subject Electrodes en_US
dc.subject Nanotubes en_US
dc.subject Growth en_US
dc.subject Oxide en_US
dc.title In-situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium-ion Batteries en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account