dc.contributor.author |
Shiva, Konda
|
|
dc.contributor.author |
Jayaramulu, Kolleboyina
|
|
dc.contributor.author |
Rajendra, H. B.
|
|
dc.contributor.author |
Maji, Tapas Kumar
|
|
dc.contributor.author |
Bhattacharyya, Aninda J.
|
|
dc.date.accessioned |
2017-02-21T07:02:08Z |
|
dc.date.available |
2017-02-21T07:02:08Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
Shiva, K; Jayaramulu, K; Rajendra, HB; Maji, T; Bhattacharyya, AJ, In-situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium-ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie 2014, 640 (6) 1115-1118, http://dx.doi.org/10.1002/zaac.201300621 |
en_US |
dc.identifier.citation |
Zeitschrift Fur Anorganische Und Allgemeine Chemie |
en_US |
dc.identifier.citation |
640 |
en_US |
dc.identifier.citation |
6 |
en_US |
dc.identifier.issn |
0044-2313 |
|
dc.identifier.uri |
https://libjncir.jncasr.ac.in/xmlui/10572/2430 |
|
dc.description |
Restricted Access |
en_US |
dc.description.abstract |
It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: [K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport. |
en_US |
dc.description.uri |
1521-3749 |
en_US |
dc.description.uri |
http://dx.doi.org/10.1002/zaac.201300621 |
en_US |
dc.language.iso |
English |
en_US |
dc.publisher |
Wiley-V C H Verlag Gmbh |
en_US |
dc.rights |
@Wiley-V C H Verlag Gmbh, 2014 |
en_US |
dc.subject |
Inorganic & Nuclear Chemistry |
en_US |
dc.subject |
Sn@C |
en_US |
dc.subject |
Metal-Organic Frameworks |
en_US |
dc.subject |
Anode Materials |
en_US |
dc.subject |
Specific Capacity |
en_US |
dc.subject |
Rate Capability |
en_US |
dc.subject |
Lithium-Ion Battery |
en_US |
dc.subject |
Secondary Batteries |
en_US |
dc.subject |
Hollow Carbon |
en_US |
dc.subject |
Storage |
en_US |
dc.subject |
Sn |
en_US |
dc.subject |
Li |
en_US |
dc.subject |
Composite |
en_US |
dc.subject |
Electrodes |
en_US |
dc.subject |
Nanotubes |
en_US |
dc.subject |
Growth |
en_US |
dc.subject |
Oxide |
en_US |
dc.title |
In-situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium-ion Batteries |
en_US |
dc.type |
Article |
en_US |