DSpace Repository

Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis

Show simple item record

dc.contributor.author Bhogra, Meha
dc.contributor.author Ramamurty, U.
dc.contributor.author Waghmare, Umesh V.
dc.date.accessioned 2017-02-21T09:03:23Z
dc.date.available 2017-02-21T09:03:23Z
dc.date.issued 2014
dc.identifier.citation Bhogra, M; Ramamurty, U; Waghmare, UV, Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis. Journal of Physics-Condensed Matter 2014, 26 (38), 385402 http://dx.doi.org/10.1088/0953-8984/26/38/385402 en_US
dc.identifier.citation Journal of Physics-Condensed Matter en_US
dc.identifier.citation 26 en_US
dc.identifier.citation 38 en_US
dc.identifier.issn 0953-8984
dc.identifier.uri https://libjncir.jncasr.ac.in/xmlui/10572/2568
dc.description Restricted Access en_US
dc.description.abstract We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 (1) over bar 0] and [1 (2) over bar 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 (2) over bar 1]) in Cu reveals structural instabilities, indicating that the energy barrier (gamma(usf)) along the (1 1 1)[1 (2) over bar 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution. en_US
dc.description.uri 1361-648X en_US
dc.description.uri http://dx.doi.org/10.1088/0953-8984/26/38/385402 en_US
dc.language.iso English en_US
dc.publisher IoP Publishing Ltd en_US
dc.rights @IoP Publishing Ltd, 2014 en_US
dc.subject Condensed Matter Physics en_US
dc.subject Fcc Metals en_US
dc.subject Density Functional Theory en_US
dc.subject Stacking Faults en_US
dc.subject Lattice Vibrations en_US
dc.subject Deformation And Plasticity en_US
dc.subject Generalized Gradient Approximation en_US
dc.subject Density-Functional Theory en_US
dc.subject Elastic-Constants en_US
dc.subject Metals en_US
dc.subject Energies en_US
dc.subject Alloys en_US
dc.subject Crystals en_US
dc.subject Aluminum en_US
dc.subject Copper en_US
dc.subject Creep en_US
dc.title Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account