DSpace Repository

Tuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and electronic origin

Show simple item record

dc.contributor.author Varanasi, Arun Kumar
dc.contributor.author Bhowmik, Arghya
dc.contributor.author Sarkar, Tanmay
dc.contributor.author Waghmare, Umesh V.
dc.contributor.author Bharadwaj, Mridula Dixit
dc.date.accessioned 2017-02-21T09:03:23Z
dc.date.available 2017-02-21T09:03:23Z
dc.date.issued 2014
dc.identifier.citation Varanasi, AK; Bhowmik, A; Sarkar, T; Waghmare, UV; Bharadwaj, MD, Tuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and electronic origin. Ionics 2014, 20 (3) 315-321, http://dx.doi.org/10.1007/s11581-013-0970-6 en_US
dc.identifier.citation Ionics en_US
dc.identifier.citation 20 en_US
dc.identifier.citation 3 en_US
dc.identifier.issn 0947-7047
dc.identifier.uri https://libjncir.jncasr.ac.in/xmlui/10572/2570
dc.description Restricted Access en_US
dc.description.abstract With a goal to improve the performance of LiCoO2 as a cathode material in Li-ion batteries, we simulate substitution of various elements (X = Be, Mg, Al, Ga, Si and Ti) for Co using first-principles density functional theory and predict changes in its electrochemical potential. While the electrochemical potential of LiCoO2 is enhanced with substitution of Be, Mg, Al and Ga for Co, an opposite effect is predicted of Si and Ti substitution. We determine the electronic origin of these changes in electrochemical potential using (a) Bader method of topological analysis of charge density, (b) partial density of electronic states to estimate oxidation states of metal and oxygen, and charge re-distribution upon lithiation. We find that the distribution of electronic charge donated by Li is influenced by the nature of the X-O bond. A larger electron transfer to O (in XO6 octahedron) upon lithiation leads to stronger Li intercalation and thereby higher electrochemical voltage. Our findings provide a platform for a rational design of cathode materials in Li batteries with enhanced voltage. en_US
dc.description.uri 1862-0760 en_US
dc.description.uri http://dx.doi.org/10.1007/s11581-013-0970-6 en_US
dc.language.iso English en_US
dc.publisher Springer Heidelberg en_US
dc.rights @Springer Heidelberg, 2014 en_US
dc.subject Physical Chemistry en_US
dc.subject Electrochemistry en_US
dc.subject Condensed Matter Physics en_US
dc.subject Lithium-Ion Battery Cathode en_US
dc.subject Density Functional Theory en_US
dc.subject Bader Charge Analysis en_US
dc.subject Electrochemical Potential en_US
dc.subject Lithium-Ion Batteries en_US
dc.subject Augmented-Wave Method en_US
dc.subject Cathode Materials en_US
dc.subject Doped Licoo2 en_US
dc.subject Intercalation en_US
dc.subject Performance en_US
dc.subject Principles en_US
dc.subject Design en_US
dc.title Tuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and electronic origin en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account