dc.contributor.advisor |
Datta, Ranjan |
|
dc.contributor.author |
Chowdary, B. Loukya |
|
dc.date.accessioned |
2020-07-21T14:56:40Z |
|
dc.date.available |
2020-07-21T14:56:40Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Chowdary, B. Loukya. 2015, Electron magnetic circular dichroism of epitaxial magnetic thin films at nanoscale, Ph.D. thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru |
en_US |
dc.identifier.uri |
https://libjncir.jncasr.ac.in/xmlui/handle/10572/2982 |
|
dc.description |
Open access |
en_US |
dc.description.abstract |
Transmission Electron Microscopy (TEM) has been a routine characterization tool for structural and chemical composition analysis of materials by imaging and spectroscopy, respectively. Quantitative magnetic information by electron magnetic circular dichroism technique (EMCD) in a TEM is an innovative idea and new addition based on electron diffraction [1-3]. EMCD is equivalent to X-ray Magnetic Circular Dichroism (XMCD), which is routinely performed in a synchrotron to characterize atom specific orbital and spin magnetic moments in materials [4-6]. Though there are reports on linear dichroism studies in TEM [7] circular dichroism was thought to be possible only with existence of spin-polarized electron source in TEM due to the similarities recognized between the X-ray Absorption Near Edge Structure (XANES) and Energy Loss Near Edge Structures (ELNES) [1,8]. Principle of EMCD is discussed in detail in Section 1.1.1. Schattschneider et al., first theoretically proposed the possibility of a dichroic experiment in TEM in the year 2003 [1], later the experimental feasibility of such proposal named as Electron Magnetic Circular Dichroism (EMCD) was proved in the year 2006 [2]. |
en_US |
dc.language.iso |
English |
en_US |
dc.publisher |
Jawaharlal Nehru Centre for Advanced Scientific Research |
en_US |
dc.rights |
© 2015 JNCASR |
en_US |
dc.subject |
Thin films |
en_US |
dc.title |
Electron magnetic circular dichroism of epitaxial magnetic thin films at nanoscale |
en_US |
dc.type |
Thesis |
en_US |
dc.type.qualificationlevel |
Doctoral |
en_US |
dc.type.qualificationname |
Ph.D. |
en_US |
dc.publisher.department |
Chemistry and Physics of Materials Unit (CPMU) |
en_US |