DSpace Repository

Machine-learning and first-principles modelling: from dielectric breakdown in solids to mechanical behavior of high-entropy alloys

Show simple item record

dc.contributor.advisor Waghmare, Umesh V.
dc.contributor.author Kumar, Narendra
dc.date.accessioned 2025-09-19T11:20:03Z
dc.date.available 2025-09-19T11:20:03Z
dc.date.issued 2023-12
dc.identifier.citation Kumar, Narendra. 2023, Machine-learning and first-principles modelling: from dielectric breakdown in solids to mechanical behavior of high-entropy alloys, Ph.D thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru en_US
dc.identifier.uri https://libjncir.jncasr.ac.in/xmlui/handle/123456789/3452
dc.description Open access en_US
dc.description.abstract Abstract not available en_US
dc.language.iso en en_US
dc.publisher Jawaharlal Nehru Centre for Advanced Scientific Research en_US
dc.subject Alloys en_US
dc.subject Dielectrics en_US
dc.subject Machine-Learning
dc.title Machine-learning and first-principles modelling: from dielectric breakdown in solids to mechanical behavior of high-entropy alloys en_US
dc.type Thesis en_US
dc.type.qualificationlevel Doctoral en_US
dc.type.qualificationname PhD en_US
dc.publisher.department tsu en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account