Please use this identifier to cite or link to this item:
https://libjncir.jncasr.ac.in/xmlui/handle/10572/1898
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Senanayak, Satyaprasad P. | |
dc.contributor.author | Sangwan, Vinod K. | |
dc.contributor.author | McMorrow, Julian J. | |
dc.contributor.author | Everaerts, Ken | |
dc.contributor.author | Chen, Zhihua | |
dc.contributor.author | Facchetti, Antonio | |
dc.contributor.author | Hersam, Mark C. | |
dc.contributor.author | Marks, Tobin J. | |
dc.contributor.author | Narayan, K. S. | |
dc.date.accessioned | 2016-10-28T05:58:42Z | - |
dc.date.available | 2016-10-28T05:58:42Z | - |
dc.date.issued | 2015 | |
dc.identifier.citation | ADVANCED ELECTRONIC MATERIALS | en_US |
dc.identifier.citation | 1 | en_US |
dc.identifier.citation | 12 | en_US |
dc.identifier.issn | 2199-160X | |
dc.identifier.uri | https://libjncir.jncasr.ac.in/xmlui/10572/1898 | - |
dc.description | Restricted access | en_US |
dc.description.abstract | Solution-processed polymer-based logic circuits are typically associated with high operating voltage and slow switching speeds. Here, polymer field-effect transistors (PFETs) fabricated on hybrid self-assembled nanodielectric (SAND) structures are reported, the latter consisting of alternating organic-inorganic layers exhibiting low leakage current (approximate to 10(-9) A cm(-2)) and high capacitance (approximate to 0.8 mu F cm(-2)). Suitable device engineering, controllable dielectric parameters, and interface energetics enable PFET operation at +/- 1 V, field-effect mobility (mu(FET)) > 2.0 cm(2) V-1 s(-1), subthreshold swing approximate to 100 mV dec(-1), and switching response approximate to 150 ns. These performance parameters are orders of magnitude higher than similar devices fabricated from other polymer dielectrics. Inverter and NAND logic circuits fabricated from these SAND-based PFETs possess voltage gain up to 38 and maximum-frequency bandwidth of 2 MHz. A systematic study comparing different classes of dielectric and semiconducting material attributes the enhanced performance to improved relaxation dynamics of the SAND layer and tunable chemically functionalized interfaces. | en_US |
dc.description.uri | http://dx.doi.org/10.1002/aelm.201500226 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Wiley-Blackwell | en_US |
dc.rights | ?Wiley-Blackwell, 2015 | en_US |
dc.subject | Nanoscience & Nanotechnology | en_US |
dc.subject | Materials Science | en_US |
dc.subject | Applied Physics | en_US |
dc.subject | Field-Effect Transistors | en_US |
dc.subject | Thin-Film Transistors | en_US |
dc.subject | Organic Complementary Circuits | en_US |
dc.subject | High-Mobility | en_US |
dc.subject | Printed Transistors | en_US |
dc.subject | Gate Dielectrics | en_US |
dc.subject | Semiconductors | en_US |
dc.subject | Insulator | en_US |
dc.subject | Electron | en_US |
dc.subject | Power | en_US |
dc.title | Self-Assembled Nanodielectrics for High-Speed, Low-Voltage Solution-Processed Polymer Logic Circuits | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles (Narayan K. S.) |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.