Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPalimar, Sowmya
dc.contributor.authorKaushik, S. D.
dc.contributor.authorSiruguri, V.
dc.contributor.authorSwain, Diptikanta
dc.contributor.authorViegas, Alison E.
dc.contributor.authorNarayana, Chandrabhas
dc.contributor.authorSundaram, Nalini G.
dc.date.accessioned2017-01-24T06:17:35Z-
dc.date.available2017-01-24T06:17:35Z-
dc.date.issued2016
dc.identifier.citationPalimar, S.; Kaushik, S. D.; Siruguri, V.; Swain, D.; Viegas, A. E.; Narayana, C.; Sundaram, N. G., Investigation of Ca substitution on the gas sensing potential of LaFeO3 nanoparticles towards low concentration SO2 gas. Dalton Transactions 2016, 45 (34), 13547-13555 http://dx.doi.org/10.1039/c6dt01819jen_US
dc.identifier.citationDalton Transactionsen_US
dc.identifier.citation45en_US
dc.identifier.citation34en_US
dc.identifier.issn1477-9226
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2073-
dc.descriptionRestricted Accessen_US
dc.description.abstractThe present work investigates the superior ability of LaFeO3 (LaFeO) and La0.8Ca0.2FeO2.95 (LaCaFeO) nanoparticles to detect 3 ppm SO2 gas. The influence of calcium substitution on the sensing behaviour of LaFeO has been studied. High resolution TEM images show that the particle sizes of LaFeO and LaCaFeO are less than 100 nm and SEM images show the agglomeration of interconnected nanoparticles. Both LaFeO and LaCaFeO crystallize in the orthorhombic crystal system with the space group Pbnm. Rietveld analysis of neutron diffraction data showed that LaCaFeO has lattice oxygen vacancies. In addition, magnetic refinements on both the samples have been carried out. The presence of lattice oxygen vacancies in LaCaFeO is qualitatively supported by Raman and XPS measurements. Electrical characterization showed increased conductivity for the LaCaFeO sample, influencing their sensing performance significantly. The LaCaFeO nanoparticles exhibit higher sensitivity, faster response time, rapid recovery time and good recyclability for sensing 3 ppm SO2 gas. This enhanced sensing behaviour is attributed to the increased oxygen vacancies in the lattice as well as the surface. As a consequence, increased active sites are created in LaCaFeO, promoting redox reaction between the analyte and the sensing material. The results demonstrated that while LaFeO is a good gas sensor, p-type substitution by Ca2+ renders this material an improved resistivity based gas sensor to detect low concentration SO2.en_US
dc.description.uri1477-9234en_US
dc.description.urihttp://dx.doi.org/10.1039/c6dt01819jen_US
dc.languageEnglishen
dc.language.isoEnglishen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rights@Royal Society of Chemistry, 2016en_US
dc.subjectChemistryen_US
dc.subjectPolymerizable Complex Methoden_US
dc.subjectSulfur-Dioxideen_US
dc.subjectElectrical-Propertiesen_US
dc.subjectLanthanum Ferriteen_US
dc.subjectIon-Transporten_US
dc.subjectThin-Filmsen_US
dc.subjectSensoren_US
dc.subjectPerovskiteen_US
dc.subjectCoen_US
dc.subjectWo3en_US
dc.titleInvestigation of Ca substitution on the gas sensing potential of LaFeO3 nanoparticles towards low concentration SO2 gasen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Chandrabhas N.)

Files in This Item:
File Description SizeFormat 
174.pdf
  Restricted Access
2.24 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.