Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2108
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRao, C. N. R.
dc.contributor.authorDey, Sunita
dc.date.accessioned2017-01-24T06:21:49Z-
dc.date.available2017-01-24T06:21:49Z-
dc.date.issued2016
dc.identifier.citationRao, C. N. R.; Dey, S., Generation of H-2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides. Journal of Solid State Chemistry 2016, 242, 107-115 http://dx.doi.org/10.1016/j.jssc.2015.12.018en_US
dc.identifier.citationJournal of Solid State Chemistryen_US
dc.identifier.citation242en_US
dc.identifier.issn0022-4596
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2108-
dc.descriptionRestricted Accessen_US
dc.description.abstractGeneration of H-2 and CO by splitting H2O and CO2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H2O or CO2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H2O or CO2. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Li(1-x)A(x)Mn(1-y)M(y)O(3) (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H-2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y0.5Sr0.5MnO3 which releases 483 mu mol/g of O-2 at 1673 K and produces 757 mu mol/g of CO from CO2 at 1173 K. The production of H-2 from H2O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H2 based on the Mn3O4/NaMnO2 cycle briefly. (C) 2015 Elsevier Inc. All rights reserved.en_US
dc.description.uri1095-726Xen_US
dc.description.urihttp://dx.doi.org/10.1016/j.jssc.2015.12.018en_US
dc.language.isoEnglishen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.rights@Academic Press Inc Elsevier Science, 2016en_US
dc.subjectChemistryen_US
dc.subjectHydrogen productionen_US
dc.subjectSyngas productionen_US
dc.subjectThermochemical CO2 splittingen_US
dc.subjectThermochemical H2O splittingen_US
dc.subjectMetal oxidesen_US
dc.subjectPerovskitesen_US
dc.subjectSolar fuelsen_US
dc.subjectLanthanum Manganite Perovskitesen_US
dc.subjectCeria/Zirconia Solid-Solutionsen_US
dc.subjectOxygen-Exchange Materialsen_US
dc.subjectHydrogen-Productionen_US
dc.subjectRedox Reactionsen_US
dc.subjectThermogravimetric Analysisen_US
dc.subjectNonstoichiometric Ceriaen_US
dc.subjectMnfe2O4-Na2Co3 Systemen_US
dc.subjectModel-Calculationsen_US
dc.subjectFuel Productionen_US
dc.titleGeneration of H-2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxidesen_US
dc.typeArticle; Proceedings Paperen_US
Appears in Collections:Research Papers (Prof. C.N.R. Rao)

Files in This Item:
File Description SizeFormat 
196.pdf
  Restricted Access
3.12 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.