Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2378
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMettela, Gangaiah
dc.contributor.authorSiddhanta, Soumik
dc.contributor.authorNarayana, Chandrabhas
dc.contributor.authorKulkarni, G. U.
dc.date.accessioned2017-02-21T06:59:33Z-
dc.date.available2017-02-21T06:59:33Z-
dc.date.issued2014
dc.identifier.citationMettela, G; Siddhanta, S; Narayana, C; Kulkarni, GU, Nanocrystalline Ag microflowers as a versatile SERS platform. Nanoscale 2014, 6 (13) 7480-7488, http://dx.doi.org/10.1039/c4nr01120aen_US
dc.identifier.citationNanoscaleen_US
dc.identifier.citation6en_US
dc.identifier.citation13en_US
dc.identifier.issn2040-3364
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2378-
dc.descriptionRestricted Accessen_US
dc.description.abstractIn this paper, the synthesis of Ag microflowers for use as manipulable and reusable substrates in surface enhanced Raman spectroscopy (SERS) is demonstrated, working with ultra-low volumes of the analyte. Flower-like AgBr crystallites with a growth direction of < 110 > were first obtained by thermolysing a complex obtained by the stabilization of (AgCl2)(-) anions with tetraoctylammonium bromide. NaBH4 reduction leads to the formation of porous Ag microflowers (50-100 mu m) with interconnected nanoparticles. The coupling of the nanoparticles in the microflower results in broadband extinction from visible to IR wavelengths, facilitating SERS using both red and green wavelengths. Using thiophenol as test analyte, uniform SERS enhancement factors in the range of 10(6)-10(8) have been achieved from different parts of the microflower. The microflowers have been used for labeled and non-labeled detection of both single- and double-stranded DNA and using simple manipulation techniques, SERS data have been collected from ultra-low volumes of the analyte solution (similar to 0.34 nL). The reusability of the substrate for SERS over multiple cycles involving a rapid and efficient wet chemical cleaning procedure is also demonstrated. Finally, by placing the microflower in a microfluidic device, chemical reactions have been examined in situ.en_US
dc.description.uri2040-3372en_US
dc.description.urihttp://dx.doi.org/10.1039/c4nr01120aen_US
dc.language.isoEnglishen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rights@Royal Society of Chemistry, 2014en_US
dc.subjectChemistryen_US
dc.subjectNanoscience & Nanotechnologyen_US
dc.subjectMaterials Scienceen_US
dc.subjectApplied Physicsen_US
dc.subjectSurface-Enhanced Ramanen_US
dc.subjectScattering Sersen_US
dc.subjectGold Nanoparticlesen_US
dc.subjectSingle-Moleculeen_US
dc.subjectSpectroscopyen_US
dc.subjectSubstrateen_US
dc.subjectNanostructuresen_US
dc.subjectFabricationen_US
dc.subjectAbsorptionen_US
dc.subjectEfficiencyen_US
dc.titleNanocrystalline Ag microflowers as a versatile SERS platformen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Chandrabhas N.)
Research Articles (Kulkarni, G. U.)

Files in This Item:
File Description SizeFormat 
163.pdf
  Restricted Access
1.75 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.