Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2428
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuresh, Venkata M.
dc.contributor.authorBonakala, Satyanarayana
dc.contributor.authorAtreya, Hanudatta S.
dc.contributor.authorBalasubramanian, Sundaram
dc.contributor.authorMaji, Tapas Kumar
dc.date.accessioned2017-02-21T07:02:08Z-
dc.date.available2017-02-21T07:02:08Z-
dc.date.issued2014
dc.identifier.citationSuresh, VM; Bonakala, S; Atreya, HS; Balasubramanian, S; Maji, TK, Amide Functionalized Microporous Organic Polymer (Am-MOP) for Selective CO2 Sorption and Catalysis. ACS Applied Materials & Interfaces 2014, 6 (7) 4630-4637, http://dx.doi.org/10.1021/am500057zen_US
dc.identifier.citationACS Applied Materials & Interfacesen_US
dc.identifier.citation6en_US
dc.identifier.citation7en_US
dc.identifier.issn1944-8244
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2428-
dc.descriptionRestricted Accessen_US
dc.description.abstractWe report the design and synthesis of an amide functionalized microporous organic polymer (Am-MOP) prepared from trimesic acid and p-phenylenediamine using thionyl chloride as a reagent. Polar amide (CONH) functional groups act as a linking unit between the node and spacer and constitute the pore wall of the continuous polymeric network. The strong covalent bonds between the building blocks (trimesic acid and p-phenylenediamine) through amide bond linkages provide high thermal and chemical stability to Am-MOP. The presence of a highly polar pore surface allows selective CO2 uptake at 195 K over other gases such as N-2, Ar, and O-2. The CO2 molecule interacts with amide functional groups via Lewis acid base type interactions as demonstrated through DFT calculations. Furthermore, for the first time Am-MOP with basic functional groups has been exploited for the Knoevenagel condensation reaction between aldehydes and active methylene compounds. Availability of a large number of catalytic sites per volume and confined microporosity gives enhanced catalytic efficiency and high selectivity for small substrate molecules.en_US
dc.description.urihttp://dx.doi.org/10.1021/am500057zen_US
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights@American Chemical Society, 2014en_US
dc.subjectNanoscience & Nanotechnologyen_US
dc.subjectMaterials Scienceen_US
dc.subjectPorous Organic Polymeren_US
dc.subjectMicroporosityen_US
dc.subjectPolar Pore Surfaceen_US
dc.subjectCo2 Adsorptionen_US
dc.subjectKnoevenagel Condensationen_US
dc.subjectCatalysisen_US
dc.subjectCarbon-Dioxide Captureen_US
dc.subjectGas-Storageen_US
dc.subjectHeterogeneous Catalysisen_US
dc.subjectCoordination Polymeren_US
dc.subjectRoom-Temperatureen_US
dc.subjectSurface-Areaen_US
dc.subjectFrameworksen_US
dc.subjectAdsorptionen_US
dc.subjectFluorescenten_US
dc.subjectLiganden_US
dc.titleAmide Functionalized Microporous Organic Polymer (Am-MOP) for Selective CO2 Sorption and Catalysisen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Balasubramanian Sundaram)
Research Articles (Tapas Kumar Maji)

Files in This Item:
File Description SizeFormat 
20.pdf
  Restricted Access
4.54 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.