Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2430
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShiva, Konda
dc.contributor.authorJayaramulu, Kolleboyina
dc.contributor.authorRajendra, H. B.
dc.contributor.authorMaji, Tapas Kumar
dc.contributor.authorBhattacharyya, Aninda J.
dc.date.accessioned2017-02-21T07:02:08Z-
dc.date.available2017-02-21T07:02:08Z-
dc.date.issued2014
dc.identifier.citationShiva, K; Jayaramulu, K; Rajendra, HB; Maji, T; Bhattacharyya, AJ, In-situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium-ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie 2014, 640 (6) 1115-1118, http://dx.doi.org/10.1002/zaac.201300621en_US
dc.identifier.citationZeitschrift Fur Anorganische Und Allgemeine Chemieen_US
dc.identifier.citation640en_US
dc.identifier.citation6en_US
dc.identifier.issn0044-2313
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/10572/2430-
dc.descriptionRestricted Accessen_US
dc.description.abstractIt is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: [K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport.en_US
dc.description.uri1521-3749en_US
dc.description.urihttp://dx.doi.org/10.1002/zaac.201300621en_US
dc.language.isoEnglishen_US
dc.publisherWiley-V C H Verlag Gmbhen_US
dc.rights@Wiley-V C H Verlag Gmbh, 2014en_US
dc.subjectInorganic & Nuclear Chemistryen_US
dc.subjectSn@Cen_US
dc.subjectMetal-Organic Frameworksen_US
dc.subjectAnode Materialsen_US
dc.subjectSpecific Capacityen_US
dc.subjectRate Capabilityen_US
dc.subjectLithium-Ion Batteryen_US
dc.subjectSecondary Batteriesen_US
dc.subjectHollow Carbonen_US
dc.subjectStorageen_US
dc.subjectSnen_US
dc.subjectLien_US
dc.subjectCompositeen_US
dc.subjectElectrodesen_US
dc.subjectNanotubesen_US
dc.subjectGrowthen_US
dc.subjectOxideen_US
dc.titleIn-situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium-ion Batteriesen_US
dc.typeArticleen_US
Appears in Collections:Research Articles (Tapas Kumar Maji)

Files in This Item:
File Description SizeFormat 
128.pdf
  Restricted Access
862.93 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.