Please use this identifier to cite or link to this item:
https://libjncir.jncasr.ac.in/xmlui/handle/10572/2430
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shiva, Konda | |
dc.contributor.author | Jayaramulu, Kolleboyina | |
dc.contributor.author | Rajendra, H. B. | |
dc.contributor.author | Maji, Tapas Kumar | |
dc.contributor.author | Bhattacharyya, Aninda J. | |
dc.date.accessioned | 2017-02-21T07:02:08Z | - |
dc.date.available | 2017-02-21T07:02:08Z | - |
dc.date.issued | 2014 | |
dc.identifier.citation | Shiva, K; Jayaramulu, K; Rajendra, HB; Maji, T; Bhattacharyya, AJ, In-situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium-ion Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie 2014, 640 (6) 1115-1118, http://dx.doi.org/10.1002/zaac.201300621 | en_US |
dc.identifier.citation | Zeitschrift Fur Anorganische Und Allgemeine Chemie | en_US |
dc.identifier.citation | 640 | en_US |
dc.identifier.citation | 6 | en_US |
dc.identifier.issn | 0044-2313 | |
dc.identifier.uri | https://libjncir.jncasr.ac.in/xmlui/10572/2430 | - |
dc.description | Restricted Access | en_US |
dc.description.abstract | It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: [K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport. | en_US |
dc.description.uri | 1521-3749 | en_US |
dc.description.uri | http://dx.doi.org/10.1002/zaac.201300621 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Wiley-V C H Verlag Gmbh | en_US |
dc.rights | @Wiley-V C H Verlag Gmbh, 2014 | en_US |
dc.subject | Inorganic & Nuclear Chemistry | en_US |
dc.subject | Sn@C | en_US |
dc.subject | Metal-Organic Frameworks | en_US |
dc.subject | Anode Materials | en_US |
dc.subject | Specific Capacity | en_US |
dc.subject | Rate Capability | en_US |
dc.subject | Lithium-Ion Battery | en_US |
dc.subject | Secondary Batteries | en_US |
dc.subject | Hollow Carbon | en_US |
dc.subject | Storage | en_US |
dc.subject | Sn | en_US |
dc.subject | Li | en_US |
dc.subject | Composite | en_US |
dc.subject | Electrodes | en_US |
dc.subject | Nanotubes | en_US |
dc.subject | Growth | en_US |
dc.subject | Oxide | en_US |
dc.title | In-situ Stabilization of Tin Nanoparticles in Porous Carbon Matrix derived from Metal Organic Framework: High Capacity and High Rate Capability Anodes for Lithium-ion Batteries | en_US |
dc.type | Article | en_US |
Appears in Collections: | Research Articles (Tapas Kumar Maji) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
128.pdf Restricted Access | 862.93 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.