Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/374
Title: Effects of Changes in the Interparticle Separation Induced by Alkanethiols on the Surface Plasmon Band and Other Properties of Nanocrystalline Gold Films
Authors: Agrawal, Ved Varun
Varghese, Neenu
Kulkami, G U
Rao, C N R
Keywords: Self-Assembled Monolayers
Nanoparticle Arrays
Optical-Properties
Meta Nanoparticles
Resonance
Scattering
Clusters
Superlattices
Absorption
Particles
Issue Date: 18-Mar-2008
Publisher: American Chemical Society
Citation: Langmuir 24(6), 2494-2500 (2008)
Abstract: Effects of changing the interparticle separation on the surface plasmon bands of ultrathin films of gold nanoparticles have been investigated by examining the interaction of alkanethiols of varying chain length on nanocrystalline gold films generated at the organic-aqueous interface. Adsorption of alkanethiols causes blue-shifts of the surface plasmon adsorption band, the magnitude of the shift being proportional to the chain length. The disordered nanocrystals thus created (lambda(max), 530 m) are in equilibrium with the ordered nanocrystals in the film (lambda(max), 700 m) as indicated by an isosbestic point around 600 nm. Long chain thiols disintegrate or disorderthe gold films more effectively, as demonstrated by the increased population of the thiol-capped gold nanocrystals in solution. The rate of interaction of the thiols with the film decreases with the decreasing chain length. The effect of an alkanethiol on the spectrum of the gold film is specific, in that the effects with long and short chains are reversible. The changes in the plasmon band of gold due to interparticle separation can be satisfactorily modeled on the basis of the Maxwell-Garnett formalism. Spectroscopic studies, augmented by calorimetric measurements, suggest that the interaction of alkanethiols involves two steps, the first step being the exothermic gold film-thiol interaction and the second step includes the endothermic disordering process followed by further thiol capping of isolated gold particles.
Description: Restricted Access
URI: https://libjncir.jncasr.ac.in/xmlui/10572/374
Other Identifiers: 0743-7463
Appears in Collections:Research Papers (Prof. C.N.R. Rao)

Files in This Item:
File Description SizeFormat 
Langmuir, 24, 2494.pdf
  Restricted Access
245.85 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.