Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/123456789/3483
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBalasubramanian, S.
dc.contributor.authorGaur, Anjali
dc.date.accessioned2025-10-17T08:53:54Z
dc.date.available2025-10-17T08:53:54Z
dc.date.issued2024-05
dc.identifier.citationGaur, Anjali. 2024, Empirical and machine learned potential models for liquid ethylene glycol, Ph.D thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluruen_US
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/handle/123456789/3483
dc.descriptionOpen accessen_US
dc.description.abstractAbstract not availableen_US
dc.languageEnglishen
dc.language.isoenen_US
dc.publisherJawaharlal Nehru Centre for Advanced Scientific Researchen_US
dc.rightsJNCASR theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.en
dc.subjectLiquid particle technologyen_US
dc.subjectLiquid ethylene glycolen_US
dc.subjectMolecular dynamics
dc.titleEmpirical and machine learned potential models for liquid ethylene glycolen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhDen_US
dc.publisher.departmentcpmuen_US
dc.embargoYYYY-MM-DD
Appears in Collections:Student Theses (CPMU)

Files in This Item:
File Description SizeFormat 
10174.pdf
  Restricted Access
34.85 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.