Abstract:
The eclosion and oviposition rhythms of flies from a population of Drosophila melanogaster maintained under constant conditions of the laboratory were assayed under constant light (LL), constant darkness (DD), and light/dark (LD) cycles of 10:10h (T20), 12:12h (T24), and 14:14h (T28). The mean (+/-95% confidence interval; CI) free-running period (tau) of the oviposition rhythm was 26.34 +/- 1.04 h and 24.50 +/- 1.77 h in DD and LL, respectively. The eclosion rhythm showed a tau of 23.33 +/- 0.63 h (mean 95% CI) in DD, and eclosion was not rhythmic in LL. The tau of the oviposition rhythm in DD was significantly greater than that of the eclosion rhythm. The eclosion rhythm of all 10 replicate vials entrained to the three periodic light regimes, T20, T24, and T28, whereas the oviposition rhythm of only about 24 and 41% of the individuals entrained to T20 and T24 regimes, respectively, while about 74% of the individuals assayed in T28 regimes showed entrainment. Our results thus clearly indicate that the tau and the limits of entrainment of eclosion rhythm are different from those of the oviposition rhythm, and hence this reinforces the view that separate oscillators may regulate these two rhythms in D. melanogaster.