Please use this identifier to cite or link to this item: https://libjncir.jncasr.ac.in/xmlui/handle/10572/2634
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSinha, Kalyan B.-
dc.contributor.authorChattopadhyay, Arup-
dc.date.accessioned2019-07-18T11:06:19Z-
dc.date.available2019-07-18T11:06:19Z-
dc.date.issued2012-09-17-
dc.identifier.citationChattopadhyay, Arup. 2012, Trace formulas of higher order, Ph.D thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluruen_US
dc.identifier.urihttps://libjncir.jncasr.ac.in/xmlui/handle/10572/2634-
dc.description.abstractLet A be an operator in a Hilbert space H with Dom(A) is the domain and Ran(A) is the range of the operator A. An operator A is said to be densely defined if Dom(A) is dense in H. A densely defined operator A is said to be self-adjoint if A = A (where A is the adjoint of the operator A). The set of all bounded and everywhere defined operators in H is denoted by B(H) and B(H) is a Banach space with respect to operator norm k.k.en_US
dc.language.isoEnglishen_US
dc.publisherJawaharlal Nehru Centre for Advanced Scientific Researchen_US
dc.rights© 2012 JNCASR-
dc.subjectTrace formulasen_US
dc.titleTrace formulas of higher orderen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePh.D.en_US
dc.publisher.departmentTheoretical Sciences Unit (TSU)en_US
Appears in Collections:Student Theses (TSU)

Files in This Item:
File Description SizeFormat 
8331 TSU.pdf715.16 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.