Abstract:
Origin of unprecedentedly high electron mobility observed in the c-axis oriented GaN nanowall networks is investigated by studying the depth distribution of structural, electrical and optical properties of several such high mobility samples grown by molecular beam epitaxy.(MBE) technique for different time durations. It has been found that in two hour grown samples, walls are tapered continuously from the bottom to the top. While in four hour grown samples, walls are flat-topped with the top surface containing certain secondary tip structures. These additional features run along the length of the walls to form a well-connected network. Our study reveals that the carriers are quantum mechanically confined not only in the secondary tip structures but also in the wider part of the walls. The secondary tip structures, which are found to offer higher mobility than the rest of the network, are also identified as the regions of stronger confinement. The effect of mobility enhancement observed in these samples has been attributed to a 2D quantum confinement of electrons in the central vertical plane of the walls. (C) 2015 Elsevier Ltd. All rights reserved.