DSpace Repository

Reversible acetylation of chromatin: Implication in regulation of gene expression, disease and therapeutics

Show simple item record

dc.contributor.author Selvi, B Ruthrotha
dc.contributor.author Kundu, Tapas K
dc.date.accessioned 2012-03-05T11:23:55Z
dc.date.available 2012-03-05T11:23:55Z
dc.date.issued 2009
dc.identifier 1860-6768 en_US
dc.identifier.citation Biotechnology Journal 4(3), 375-390 (2009) en_US
dc.identifier.uri https://libjncir.jncasr.ac.in/xmlui/10572/557
dc.description Restricted Access en_US
dc.description.abstract The eukaryotic genome is a highly dynamic nucleoprotein complex that is comprised of DNA, histones, nonhistone proteins and RNA, and is termed as chromatin. The dynamicity of the chromatin is responsible for the regulation of all the DNA-templated phenomena in the cell. Several factors, including the nonhistone chromatin components, ATP-dependent remodeling factors and the chromatin-modifying enzymes, mediate the combinatorial post-translational modifications that control the chromatin fluidity and, thereby, the cellular functions. Among these modifications, reversible acetylation plays a central role in the highly orchestrated network. The enzymes responsible for the reversible acetylation, the histone acetyltransferases (HATs) and histone deacetylases (HDACs), not only act on histone substrates but also on nonhistone proteins. Dysfunction of the HATs/HDACs is associated with various diseases like cancer, diabetes, asthma, cardiac hypertrophy, retroviral pathogenesis and neurodegenerative disorders. Therefore, modulation of these enzymes is being considered as an important therapeutic strategy. Although substantial progress has been made in the area of HDAC inhibitors, we have focused this review on the HATs and their small-molecule modulators in the context of disease and therapeutics. Recent discoveries from different groups have established the involvement of HAT function in various diseases. Furthermore, several new classes of HAT modulators have been identified and their biological activities have also been reported. The scaffold of these small molecules can be used for the design and synthesis of better and efficient modulators with superior therapeutic efficacy. en_US
dc.description.uri http://dx.doi.org/10.1002/biot.200900032 en_US
dc.language.iso en en_US
dc.publisher Wiley-VCH Verlag GmbH en_US
dc.rights © 2009 Wiley-VCH Verlag GmbH& Co en_US
dc.subject Chromatin en_US
dc.subject Disease en_US
dc.subject Therapeutics en_US
dc.title Reversible acetylation of chromatin: Implication in regulation of gene expression, disease and therapeutics en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account