DSpace Repository

Insights into post-translational modifications of transtition proteins, TP1 and TP2 during mammalian spermiogenesis

Show simple item record

dc.contributor.advisor Rao, M.R.S.
dc.contributor.author Gupta, Nikhil
dc.date.accessioned 2021-05-18T05:23:14Z
dc.date.available 2021-05-18T05:23:14Z
dc.date.issued 2014
dc.identifier.citation Gupta, Nikhil. 2014, Insights into post-translational modifications of transtition proteins, TP1 and TP2 during mammalian spermiogenesis, Ph.D thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru en_US
dc.identifier.uri https://libjncir.jncasr.ac.in/xmlui/handle/123456789/3106
dc.description.abstract Spermatogenesis is a male germ cell differentiation process in which a diploid spermatogonial cell differentiates into mature motile haploid spermatozoa through a series of biochemical and morphological changes. Spermatogenesis is a continuous process resulting in the formation of a haploid male gamete which upon its union with the haploid female gamete restores the cellular chromosome number and transfers information from generation to generation (1–4). This process in mammals occurs in the seminiferous tubules of testis where physical association with Sertoli cells (non-germ cell) is critical for the spermatogonia maintenance and its differentiation into spermatids (Figure 1.1). Sertoli cells possess receptor for hormones and mediate their biological effect on the germ cells. Mammalian spermatogenesis is controlled by the hormonal messengers, follicle stimulating hormone (FSH), luteinizing hormone (LH) and androgens (testosterone), which exert their effect via autocrine, paracrine and endocrine pathways (Figure 1.2) (5–9). Cross-sectioning of seminiferous tubules reveals the presence of cell association of germ cells at a defined developmental phase and is referred to as “stage”. Each organism has a characteristic number of stages or cell associations which can be identified by cross-sectioning of the seminiferous tubule over time (4). Time required for the culmination of stages (cell associations) in an ordered manner is called the cycle of seminiferous epithelium and is also a peculiar characteristic of each organism. It requires 4-5 cycles in different organisms for the completion of spermatogenesis from spermatogonia to spermatozoa (4, 10). A comparison of spermatogenesis characteristics of many mammalian species is given in Table 1.1. en_US
dc.language.iso English en_US
dc.publisher Jawaharlal Nehru Centre for Advanced Scientific Research en_US
dc.rights © 2014 JNCASR
dc.subject Mammals en_US
dc.subject Spermiogenesis en_US
dc.title Insights into post-translational modifications of transtition proteins, TP1 and TP2 during mammalian spermiogenesis en_US
dc.type Thesis en_US
dc.type.qualificationlevel Doctoral en_US
dc.type.qualificationname Ph.D en_US
dc.publisher.department Molecular Biology and Genetics Unit (MBGU) en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account