DSpace Repository

Biochemical and physiological investigations on adenosine monophosphate deaminase and haloacid dehalogenase superfamily members from plasmodium spp

Show simple item record

dc.contributor.advisor Balaram, Hemalatha
dc.contributor.author K.N., Lakshmeesha
dc.date.accessioned 2021-11-12T07:15:21Z
dc.date.available 2021-11-12T07:15:21Z
dc.date.issued 2019
dc.identifier.citation Lakshmeesha, K N. 2019, Biochemical and physiological investigations on adenosine monophosphate deaminase and haloacid dehalogenase superfamily members from plasmodium spp, MS thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru en_US
dc.identifier.uri https://libjncir.jncasr.ac.in/xmlui/handle/123456789/3208
dc.description Open access en_US
dc.description.abstract The current study focuses on the preliminary characterization of a purine nucleotide cycle enzyme, AMP deaminase (AMPD hereafter) and members of the Haloacid Dehalogenase superfamily (HADSF) from Plasmodium falciparum and Plasmodium berghei. Purine nucleotide cycle performs inter-conversion of IMP and AMP with the release of fumarate and ammonia as byproducts, that have physiological consequences. The pathway also plays a chief role in maintaining the adenylate energy charge (AEC) ratio, which is critical for cell survival (Chapman and Atkinson, 1973). This is achieved by regulating the levels of AMP. AMPD is a catabolic enzyme which deaminates AMP to IMP that can be further channelized to GMP production or AMP synthesis depending on the cellular requirement for respective mononucleotides. AMP can also be catabolized to adenosine and inorganic phosphate by specific/promiscuous 5´ nucleotidases, which are a common occurrence in the HAD superfamily. In a cellular context, AMP can be regarded as the central hub for the regulation of AEC. AMP deaminase, as well as nucleotidases, play a key role in maintaining the levels of this metabolite (Fig. 1). Failure in the regulation of AMP levels results in accumulation of this metabolite which has been shown to inhibit the de novo purine biosynthetic pathway that subsequently leads to defective protein synthesis (Akizu et al., 2013). AMP accumulation also drives the adenylate kinase reaction in the direction towards ATP depletion, which is physiologically not productive. Given the importance of nucleotide metabolism in the malarial parasite, it becomes imperative to have a substantial understanding of the modes and players involved in the regulation of nucleotide levels. Here, we have made an attempt to understand the role of AMPD and putative nucleotidases belonging to HAD superfamily from the parasitic protozoan Plasmodium. en_US
dc.language English en
dc.language.iso en en_US
dc.publisher Jawaharlal Nehru Centre for Advanced Scientific Research en_US
dc.rights JNCASR theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en
dc.subject Monophosphate deaminase en_US
dc.subject Plasmodium en_US
dc.title Biochemical and physiological investigations on adenosine monophosphate deaminase and haloacid dehalogenase superfamily members from plasmodium spp en_US
dc.type Thesis en_US
dc.type.qualificationlevel master en_US
dc.type.qualificationname ms en_US
dc.publisher.department MBGU en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account